PRIMARY HAND VALUES AND TOTAL HAND VALUES OF FABRICS DEVELOPED BY DIFFERENT BLENDING OF YARNS: AN EVALUATION STUDY

Dr. Nishi Dubey

Ph. D, Punjab Agricultural University, Ludhiana (Punjab)

ABSTRACT

The present paper is the extension of my previous work in which I studied the different physical and mechanical properties of yarn after blending at different ratios and their effect on the properties of the wool. In this sectionwe have done the fabric analysis on basis of apparel and appraisal in mens wera and womwns were. Subjective valuation of these samples was done to study the developed fabrics for different parameters and end user applications. Evaluation of different parameters such as texture, lusture, tactile sensation and aesthetic appearance was done on a five point scale with scores ranging from 1 for poor to 5 for excellent. Ranking method was used for the subjective evaluation of the end user applications A panel of 30 judges was purposively selected from College of Home Science, Punjab Agricultural University, Ludhiana to carry out the evaluation. The cost of the developed yarns was calculated on the basis of weight of the yarn manufactured and the cost of the raw fibers, degumming, spinning and weaving, labour and electricity charge. The collected data were coded, tabulated and analysed by using suitable statistical tests.

Keywords: appreal, fabric wool textile, suitings.

INTRODUCTION

Reasons for producing blended fabrics are to reduce cost or obtain a different appearance, obtain a greater number of desirable characteristics that cannot be obtained by using one fiber alone such as absorbency, comfort, light fastness, cross dyed effect, wearing, furnishing and dyeing efficiency etc. Fibers have been blended to produce fabric and articles of improved functionality. Technology of blending improving the qualities of constituent fibers and the cost effectiveness of the resultant produce has a great potential for development and adoption at cottage level. Although wool- silk blended fabrics are not new to the world but due to lack of awareness mills are not using blends. Therefore researches for developing appropriate method for utilization of wool, blended with other protein fiber like silk need to be intensified. Silk competes with wool because of its high elasticity, colour brilliance, resistance to pilling, strength and colour fastness properties.

Wool has been blended with silk due to economic reasons. Wool and oak tasar fibers blends can be recommended as the combined effect of warmth and comfort of wool with the strength, lusture, and comfort of silk can be successfully achieved through blending (4). Wool- silk blended fabrics are today well accepted world over due to superior technical properties like drape, strength, lusture, etc. in comparison to the pure woolen fabric.

(IJTBM) 2011, Vol. No.1, Issue No. IV, Oct-Dec

http://www.ijtbm.com

ISSN: 2231-6868

Silk can be blended with many fibers. When it is to be blended with any of the natural fibers, silk noil is used. This makes blending and spinning possible because all the fibers are of staple length. The resultant properties depend upon the ratio of the fibers blended. Silk is mainly blended with cotton and viscose or is made into union fabrics (6). The combination of cotton, rayon and same with tasar silk reduces the cost of tasar silk fabric as well as weight of the fabric. The combination of polyester with tasar improves the wash and wears along with anti-crease properties (5, 6).

Silk is the queen of all the fibres. Silk fibres have the most exciting characters like extra lustre, extreme smooth feeling, and very good moisture absorbency. Moreover, the attractive character is brilliant shade for better resilience. The other most attractive property is very good elastic recovery of silk fibre. However, pure silk has its limitations, viz less durability, poor permanent pleating, poor abrasion resistance and high cost. Considering all these characteristics of silk, the study has been planned to blend oak tasar silk with wool. But on the other hand silk is a very costly fibre. To overcome the cost factor, introduced another fibre-wool, which is a also protein fibre. Its cost is less than silk fibre, because of the above factors, present study has been designed to blend oak tasar silk, and wool with a goal to create specialized yarn, mainly with extreme soft feel with good elastic recovery, absorbency and which facilitates a brilliant colour. Tasar silk has some warmth properties so this blend can be used for winter wear clothing. (9, 8, 10)

Not much work has been done for value addition of oak tasar fiber and its waste for optimum utilization. It is because of this reason; it was decided to blend the oak tasar with wool in different proportions for value addition. Blending of oak tasar and wool is the way to incorporate better appearance in woolen fabric and to increases utility of oak tasar silk fabric.

MATERIAL METHOD

Subjective evaluation of these samples was done to study the developed fabrics for different parameters and end user applications. Evaluation of different parameters such as texture, lusture, tactile sensation and aesthetic appearance was done on a five point scale with scores ranging from 1 for poor to 5 for excellent. Ranking method was used for the subjective evaluation of the end user applications A panel of 30 judges was selected purposively from college of home science, Punjab Agricultural University, Ludhiana was selected. Samples of different count of blends were displayed before judges. The judges were asked to evaluate each sample on evaluation sheet.

COST CALCULATION OF FABRIC

Cost of the developed yarns was calculated on the basis of weight of the yarn manufactured. It included cost of operations starting from the cost of the raw fibers, cost of degumming and cost of spinning, labour and electricity charge.

http://www.ijtbm.com ISSN: 2231-6868

RESULT AND ANALYSIS

The primary and total hand values (PHV and THV) of the developed fabrics have been presented in the table. These values have been studied in terms of koshi, shari, fukumari, numeri, hari, sofutosa. The scale used for PHV was 10-srongest, 5-medium and 1-weakest while it was 5-excellent, 4-good, 3- average, 2- fair, 1- poor for THV. The data revealed that the blended fabrics S_1 as well as S_3 , both were most suitable for women's winter suitings and men's suiting winter materials. Furthermore, both these were found to be least suitable for women's thin dress material (summer) in case of S_1 as well as S_3 .

In terms of men's winter suitings, the value of Fukurami (Fullness and Softness) was found to be highest for S_3 and Koshi (Stiffness) was in the case of S_1 fabrics. Both the blended fabrics showed the highest Fukumari (Fullness and Softness). The value of Fukumari (Fullness and Softness) was more in S_1 than that of S_3 . Fukumari (fullness and softness) is the bulky, rich and well formed feeling. When the fabrics were evaluated for men's summer suitings, it was found that hari is highest followed by koshi, shari and fukumari for blended fabrics S_1 and S_3 blended fabrics. These fabrics implying highest anti drape stiffness as well as stiffness. As far as tests for women's suitings (winter) were concerned, S_3 showed highest value of fukumari and numeri (strongest) followed by koshi. Numeri and fabric S_1 showed highest fukumari and Koshi (strongest) values. Though the values were lower for blended fabrics S_1 the feel was the strongest here as well. The evaluation of fabrics for women's thin dress material (summer) revealed that the Koshi value of S_1 as well as S_3 was the better than medium and it was the lowest form of S_1 fabric. The fukumari value of S_1 as well as S_3 blended fabric was highest (strongest).

Properties	S ₃	S ₁
Men's Suiting (Winter)		
Koshi	2.79	7.14
Numeri	4.50	2.92
Fukurami	6.23	6.16
Total Hand Value (THV)	2.55	2.80
Men's Suiting (Summer)		·
Koshi	2.84	7.61
Shari	1.74	4.16
Fukurami	2.79	3.52
Hari	3.32	8.16

Table 1 Primary Hand Values and Total Hand Values of blended fabrics

(IJTBM) 2011, Vol. No.1, Issue No. IV, Oct-Dec

http://www.ijtbm.com

ISSN: 2231-6868

Total Hand Value (THV)	1.44	2.25				
Women's Thin Dress Material (Winter)						
Koshi	6.34	7.95				
Numeri	7.05	6.35				
Fukurami	10.10	9.96				
Total Hand Value (THV)	4.84	3.36				
Women's Thin Dress Material (Sun	Women's Thin Dress Material (Summer)					
Koshi	6.34	7.95				
Numeri	7.05	6.35				
Fukurami	10.10	9.96				
Total Hand Value (THV)	-0.34	-1.55				

Japanese term	English Equivalent
Koshi	Stiffness
Shari	Crispness
Fukumari	Fullness and Softness
Numeri	Smoothness
Hari	Antidrape stiffness
Sofutosa	Soft touch
	Japanese term Koshi Shari Fukumari Numeri Hari Sofutosa

 S_1 = Fabric made from 16s Ne Oak Tasar/Wool blended yarns

 S_3 = Fabric made from 10s Ne Oak Tasar/Wool blended yarns

The total hand value of fabrics was estimated from the primary hand values using Kawabata system of equations. The THV values for men's winter suiting were the highest for S_1 fabrics that got the feeling grade 'fair' followed by S_3 fabrics was also graded as 'fair'. Total hand value of the two blended fabricsshowed that S_1 was not found suitable for men's summer suitings while the THV was found fair for S_3 fabrics. Total hand value for women's thin dress material (winter) of blended fabric S_3 was found to be good. Whereas, it was fair for blended fabric S_1 . Total hand value of the both blended fabrics was found to be inadequate for women's thin dress material (summer).

SUBJECTIVE EVALUATION OF HAND VALUE OF DEVELOPED FABRICS

The opinion and preferences of a panel of experts for the two samples of wool: oak tasar (35:65) blended fabrics pertaining for texture, lusture, tactile sensation and aesthetic appearance have been

International Journal of Transformations in Business Management

(IJTBM) 2011, Vol. No.1, Issue No. IV, Oct-Dec

http://www.ijtbm.com ISSN: 2231-6868

given in table 4.25. Statistically the results were analysed through Mann Witney U Test. It is evident from the data that the blended fabric made by S3 was found to have good texture in the terms of smoothness, softness and uniformity as compared to S1. While S1 had good pebbly texture than S3 sample. A statistically significant difference was found in smoothness, softness and uniformity, whilein the case of pebbly texture the difference was not found to be significant.

Table 2 Subjective evaluation of hand value of developed fabrics

* Significant at 1 percent level, S1- 35:65 W/OT blend of 10 Ne yarn, S2- 35:65 W/OT blend of 16 Nevarn

The results revealed that the fabric sample S_1 had good lusture than the S_3 , but statistically the difference significantly. The data presented in table 2 showed that the S_3 has well in textile sensation as compared to fabric of S_1 . Statistically there was significant difference was found in in tactile sensation. The result showed in table 4.25 clearly indicated that the aesthetic appearance of both the blended fabrics S_1 as well as S_3 has same results. Statistical analysis showed that the difference between the aesthetic appearances of the two fabrics was statistically not significant.

SUBJECTIVE EVALUATION OF END USE APPLICATION OF THE FABRICS

Subjective evaluation of blended fabrics for women's wear

A perusal of the data (table 3) show that the majority of respondents felt that the S_1 were best suited for jackets (1st rank) followed by women's suiting (2nd rank), shawls, mufflers and then stoles. In

International Journal of Transformations in Business Management

http://www.ijtbm.com

(IJTBM) 2011, Vol. No.1, Issue No. IV, Oct-Dec

ISSN: 2231-6868

the case of S_3 the respondent's gives first rank to shirting/women's suiting followed by stoles, shawls, jackets and last rank was given to mufflers.

Table 3 Subjective	evaluation for	or end use	e application	of blended	fabric fo	r women's	wear
clothing							

Purpose	S1		S ₃	
	Weighted Mean	Ranks	Weighted Mean	Ranks
Jackets	4.43	1st	3.0	4th
Shawls	3.0	3rd	3.66	3rd
Stoles	2.03	5th	3.73	2nd
Mufflers	2.6	4th	2.86	5th
Shirts/women's suiting	3.96	2nd	4.53	1st

 S_1 = 35:65 W/OT blend of 10 Ne yarn, S_2 = 35:65 W/OT blend of 16 Ne yarn

Subjective evaluation of blended fabrics for men's wear

Data pertaining to subjective evaluation of blended fabric for men's wear clothing are given in table 4 showed that the respondents showed preference for jackets in blended fabric S_1 and the second highest for *lohis* followed by *kurtas* and coats whereas the least preference was given to mufflers.

Table 4 Subjective evaluation for end use application of blended fabric for men's wear clothing

Purpose S1			S 3		
	Weighted Mean	Ranks	Weighted Mean	Ranks	
Jackets	4.33	1st	3.0	3rd	
Coats	3.53	4th	2.93	5th	
Mufflers	1.53	5th	2.96	4th	
Lohis	3.9	2nd	3.63	2nd	
Kurtas	3.56	3rd	4.76	1st	

*S*₁= 35:65 W/OT blend of 10 Ne yarn, *S*₂= 35:65 W/OT blend of 16 Ne yarn

http://www.ijtbm.com

(IJTBM) 2011, Vol. No.1, Issue No. IV, Oct-Dec

ISSN: 2231-6868

It was clear from the data (table 4.27) that the blended fabric S_3 has highly preferred for *kurtas* and the second rank given to *lohis* while the least preference was shown to coats material.

Subjective evaluation of blended fabrics for home textiles

The data reported in the table 5 revealed that the majority of respondent gave highest preference to sofa cover fabric in the case of sample S_1 , while the least preference was given to throws. The sample S_3 was highly preferred by respondents for throws and the second rank given to *khes*/ woolen sheet followed by cushion cover and sofa cover. Its use as curtains was the least preferred.

Table 5 Subjective evaluation for end use application of blended fabric for home textile

Purpose	S1		S ₂	
	Weighted Mean	Ranks	Weighted Mean	Ranks
Throws	1.66	5th	3.83	1st
Curtains	3.60	2nd	3.06	5th
Sofa cover	4.13	1st	3.33	4th
Cusion cover	3.23	3rd	3.63	3rd
Khes/ woolen sheet	2.7	4th	3.80	2nd

S1- 35:65 W/OT blend of 10 Ne yarn, S2- 35:65 W/OT blend of 16 Ne yarn

COST CALCULATION OF DEVELOPED FABRICS

Calculate of cost was one of the objectives of the study. For this cost was estimated at every step i.e. procurement of raw material, degumming, blending and spinning, weaving and overheads, etc. The simple operational cost incurred in the production of per kg yarn of each blend was estimated and is presented in table 6. The production cost of yarn blended in 35:65 ratio was the maximum i.e. 1781.2 Rs/ kg of yarn. The cost of per meter 35:65 W/OT blended fabric is Rs. 1,593.73. Wastage of fiber andthe high cost of spinning were the major factor in increasing the overall cost production.

Since it is an exploratory study, the cost of production was higher. It can be brought down by scaling up the production and purchasing the raw fiber in larger amount. The costs can be further reduced by production on a large scale.

ISSN: 2231-6868

Table 6 Cost of procurement and preparation of fibers

	Oak tasar			Merino wool		
Item	Cost per unit (Kg)	Amou ntuse (Kg)	Total cost (Rs.)	Cost perunit (Kg)	Amoun tuse (Kg)	Total cost (Rs)
Cost of raw material	750/kg	15 kg	11,250	600/kg	10 kg	Rs. 6,000
Cost of degumming			129			
Total cost of prepared fibers	758.6/kg	-	11,379	600/kg		Rs. 6,000

Table 7 Cost of per kilogram of developed yarns

Processing cost	W:OT	W:OT	W:OT	W:OT
	100:0	65:35	50:50	35:65
Cost of fiber	600 Rs	652.5 Rs	675 Rs	781.2 Rs
Cost of blending andspinning	800	800	800	800
Overhead charges	200	200	200	200
Total cost/ kg yarn	1600 Rs	1652.5 Rs	1675 Rs	1781.2 Rs

Table 8 Cost of per meter developed fabric

Processing cost	W:OT 35:65	W:OT 100:0
Cost of yarn	593.73 Rs	533.33 Rs
Weaving cost	1000 Rs	1000 Rs
Total cost/ meter	1,593.73 Rs	1,533.33 Rs.

http://www.ijtbm.com ISSN: 2231-6868

CONCLUSION

The texture in terms of softness, smoothness and the uniformity was found to be better in S_3 made from 16 Ne yarn while the S_1 had a more pebbly texture. Lusture and the tactile sensation were also found to be better in fabrics S_3 made from 16 Ne as compared to S_1 made from 10 Ne yarn. Same scores were assigned to the aesthetic appearance of all the fabrics. Statistical analysis of results showed that there was no significant difference in pebbly texture, lusture and aesthetic appearance. Evaluation of blended fabrics for women's wear showed that S_1 was best suited for jackets (1st rank) followed by women's suiting (2nd rank), shawls, mufflers and stoles. In the case of S_3 , the respondents' gave first rank to shirting/women's suiting, followed by stoles, shawls, jackets and the last rank was given to mufflers. Data pertaining to subjective evaluation of blended fabric for men's wear showed that in the case of S_1 maximum preference was given to jackets and the second highest to *lohis* followed by *kurtas* and coats and mufflers. The sample S_3 was highly preferred for *kurtas* and the second rank was given to *lohis* and its use as coats was least preferred. With regard to home textiles, the highest preferences were given to sofa cover in the case of S_1 , while the least preference given to throws. Thesample S_3 was highly preferred by respondents for throws and the second rank was given to *khes*/ woolen sheet, followed by cushion covers, sofa covers and for curtains.

REFERENCES

- 1. Sreenivasa, Itagi M R, Chilakwad S L and Patil B G (2003) Khana The blended beauty of silk and cotton. Indian Silk 41: 27-29.
- 2. Tyagi G K, Gopal A and Gon D P (2007) Contribution of fiber profile to performance characteristics of polyester- viscose and polyester-cotton ring and MJS yarns. Indian J Fiber Text Res 32(1-6): 404-08.
- 3. Loghavi A, Shaikhzadeh S, Etrati S M, Mazaheri F and Haghighat-kish M (2008) A study of spinning persian silk waste/ cotton blends on Rotor Spinning System, J Text Inst 25: 49-50.
- 4. Mahish S S and Punj S K (2007) Effect of process parameters and blend percentage on physical properties of polyester/viscose blended air-jet textured yarns. Indian J Fiber Text Res 33: 13-16.
- 5. Kothari V K and Bari S K (2002) Properties of polyester/ wool parent and air-jet textured yarnsand their fabrics. Indian J Fiber Text Res 27: 156-60.
- 6. Vadivu P K and Dharni K S (2008) Enhancing the aesthetic and functional properties of silk using cotton and linen. Man Made Text 51: 54-57.
- 7. Datta R K and Patel N C (1995) Fabric feel, and appearance of some Indian suiting fabrics using Kawabata instrument. ATIRA Comm Tex, 29: 22-35.
- 8. Bhattacharya S S, Khatwant P A and Yardi S (2001) are tertiary blends better than binary blends. Indian Text J 111: 19-25.

(IJTBM) 2011, Vol. No.1, Issue No. IV, Oct-Dec

http://www.ijtbm.com

ISSN: 2231-6868

- 9. Deshmukh G (2009) Ahimsa peace silk- an innovation in silk manufacturing. Man- made Text53: 421-24.
- Dréan J Y, Sinoimeri A, Chollakup R and Frydrych R (2004) Proceedings of the Beltwide Cotton Conferences : 2002-2004 full papers, cotton pest loss database. [Cd-Rom]. Memphis:NCCA, p. 2715-2715. Beltwide Cotton Conferences, 2004-01-05/2004-01-09, San Antonio, Etats-Unis.
- 11. Fatima Z and Vatsala, R (1992) A studies on blending of tasar silk waste with polyester. IndianText J 102: 98-101.
- 12. Sreenivasa, Itagi M R, Kumar H L V and Nadiger G S (2007) Development and study of the properties of Eri silk and polyester blended yarn. Man-Made Text 48: 15-18.